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Abstract

This paper introduces the phase flow method, a novel, accurate and fast approach for constructing phase maps for non-
linear autonomous ordinary differential equations. The method operates by initially constructing the phase map for small
times using a standard ODE integration rule and builds up the phase map for larger times with the help of a local inter-
polation scheme together with the group property of the phase flow. The computational complexity of building up the
complete phase map is usually that of tracing a few rays. In addition, the phase flow method is provably and empirically
very accurate. Once the phase map is available, integrating the ODE for initial conditions on the invariant manifold only
makes use of local interpolation, thus having constant complexity.

The paper develops applications in the field of high frequency wave propagation, and shows how to use the phase flow
method to (1) rapidly propagate wave fronts, (2) rapidly calculate wave amplitudes along these wave fronts, and (3) rapidly
evaluate multiple wave arrival times at arbitrary locations.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

This paper is concerned with the problem of rapidly and accurately computing numerical solutions to
ordinary differential equations (ODEs) of the form
0021-9
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dy

dt
¼ F ðyÞ; t > 0; ð1:1Þ
where y :R! Rd and F :Rd! Rd is a smooth multivariate function. Note that the right-hand side of the equa-
tion does not depend on time and that we thus consider a class of so-called autonomous nonlinear differential
equations. Given a time T and an initial condition y0, the basic problem is to integrate the system (1.1)
and compute y(T,y0) which we may conveniently think as the position of a particle at time T, and with initial
position y0.
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As is well known, standard methods for computing y(T,y0) select a time step and a local integration rule
such as the explicit Euler method or the widely-used fourth order Runge–Kutta rule, and compute approxi-
mations of the solution by recursively applying the local integration rule at the discrete time points ns, where
n = 1,2,3, . . .. First, the accuracy of such strategies of course depends upon the local integration rule, and is
usually of the form O(sa), where a is called the order of the method. And second, the computation complexity
of such strategies is of the order of O(1/s) since one takes as many as O(1/s) time steps and that each step has
constant complexity. It goes without saying that there is a huge literature on the various methods for solving
ODEs that we shall not review. Instead, we refer to [15,16,19] for a comprehensive exposition.

1.1. A new approach

In many situations, one needs to solve (1.1) for multiple initial conditions, and the standard approach is
then to compute every solution independently which may be extremely costly. In this paper, we introduce a
new strategy for computing numerical solutions to ODEs we call the phase flow method. The method operates
by initially constructing the phase map for small times using standard ODE integrators and builds up the
phase map for larger times with the help of a local interpolation scheme together with the group property
of the phase flow. To the best of our knowledge, the phase flow method is radically different from standard
ODE integration techniques.

To explain the key ideas underlying this new method, we need to introduce some elementary terminol-
ogy. For a fixed time t, the map gt :Rd! Rd defined by gt(y0) = y(t,y0) is called the phase map, and the
family {gt, t 2 R} of all phase maps the phase flow. The phase flow has a one parameter group structure,
gt0 � gt ¼ gt0þt, and is important in the study of autonomous ODEs. A manifold M � Rd is said to be
invariant if gt(M) � M. In many practical cases, one is interested in the behavior of (1.1) on an invariant
manifold.

One such practical case may be the computations of solutions to Hamilton–Jacobi equations as those aris-
ing in the approximation of high-frequency waves, also known as geometrical optics. Here, one is interested in
the trajectories y(t) = (x(t),p(t)) in the phase space Rd · Rd, d = 2,3, which are solutions to the Hamiltonian
flow
dx

dt
¼ rpHðx; pÞ; dp

dt
¼ �rxHðx; pÞ; ð1:2Þ
where the Hamiltonian H(x,p) is given by
Hðx; pÞ ¼ cðxÞjpj;

and c(x) is the medium sound speed. In Section 3, we shall briefly review the reason why the Hamiltonian flow
describes the propagation of high-frequency waves. Given the initial position of a wave front—a smooth sur-
face S in phase space—a problem of considerable interest is then to compute the location of the wave front at a
later time. In other words, we wish to integrate the system (1.2) for each y0 = (x0,p0) 2 S. Here, the invariant
manifold M might be Rd · Rd, or Rd · Sd�1 where one substitutes p with the unit vector m = p/jpj which has the
same orientation. In the case where the wave speed is periodic, M can even be reduced to a domain which is
equivalent to the compact set [0, 1)d · Sd�1, see Section 3.

Instead of integrating (1.1) for each individual initial condition y0, the phase flow method constructs the
complete phase map gT at time T. The method is described in Section 2 but we now sketch the key ingredients.
To do so, we fix a small time s > 0, and suppose that T = 2ns.

1. Discretization. The phase flow methods assumes that we have available a uniform or quasi-uniform grid on
M.

2. Initialization. We then start by computing an approximation of the phase map gs at time s. The value of gs

at each gridpoint is computed by applying a standard ODE integration rule with a single time step of length
s. The value of gs at any other point is defined via local interpolation.

3. Loop. For k = 1, . . . ,n, we then construct g2ks using the group relation g2ks ¼ g2k�1s � g2k�1s. For each grid-
point y0,
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g2ksðy0Þ ¼ g2k�1sðg2k�1sðy0ÞÞ ð1:3Þ

while g2ks is defined via local interpolation at any other point.

When the algorithm terminates, one holds an approximation of the whole phase map at time T = 2ns. In Sec-
tion 2, we will see that the phase flow method is as accurate as the standard integration methods discussed
above. What is remarkable, however, is that under certain assumptions, the asymptotic computational com-
plexity of the phase flow algorithm is lower than that of a standard algorithm tracing out a single ray, i.e. inte-
grating the solution for a single initial condition. On top of that, as soon as gT is available, computing y(T,y0)
for any arbitrary initial condition y0 2M only involves local interpolation, an operation with O(1) complexity.

As we pointed out earlier, this is only a rough sketch of the method and our aim here is to convey the main
underlying ideas. Namely, the phase flow method avoids many computations by making a systematic use of
what has actually been computed at previous steps. In details, the method uses a repeated squaring type algo-
rithm as in (1.3) although the time increments are typically tuned differently as to better control the accuracy,
see Section 2.

1.2. High frequency wave propagation

This paper then applies the phase flow method to solve important problems arising in computational high
frequency wave propagation. The numerical methods we develop are for classical high frequency asymptotic
expansions of the scalar wave equation
uttðxÞ � cðxÞ2Du ¼ 0; t > 0; x 2 Rd ; ð1:4Þ

here, t is time, x is the spatial variable and u(t,x) is the amplitude of the wave. Standard numerical methods
such as finite difference, finite volume and finite element methods [21,24] require a few gridpoints or cells per
wavelength in order to resolve the wave field accurately. When the wavelengths are small compared to the size
of the computational domain, these methods are very expensive and approximations must be used. In the geo-
metrical optics approximation, the solution to the wave equation (1.4) is expanded in inverse powers of x
uðt; xÞ ¼ eixUðt;xÞ
X
nP0

Anðt; xÞðixÞ�n
; ð1:5Þ
where u is a complex solution of the wave equation, U(t,x) is the phase of the wave, and the An’s are real
amplitudes which are functions of time and space. Substituting this expansion into the wave equation and
equating the coefficients of powers of x gives a set of equations for the phase and the amplitudes. As is well
known, high-frequency expansions such as the WKB ansatz (1.5) are good approximations to some of the lin-
ear waves which are solutions to (1.4) [37]. These approximations are nonlinear, however, and one of the goals
of this paper is to introduce novel numerical methods based on such high-frequency approximations.

Specifically, we consider three problems of significant interest:

1. Wave front tracking. In the context of high-frequency waves, one can think of a wave front as the level set of
the phase function U. Given the location of a wave front at time t = 0, e.g. the surface {x :U(0, x) = 0}, we
wish to compute the position of the wave front at an arbitrary later time t, e.g. the surface {x :U(t,x) = 0}.

2. Amplitude computations. The problem here is to calculate an approximation of the amplitude of the wave
(1.5) along a wave front of interest. For example, one may want to evaluate the leading amplitude term
A0(t,x) along the surface {x :U(t,x) = 0}.

3. Multiple arrival times computations. Given a collection of sources {xs} and target points {xr} (receivers), the
problem is to compute the arrival times of waves at each point xr. Of special interest is the situation where a
single source generates multiple arrival times, a situation which often occurs when the medium is
inhomogeneous.

As we shall see in Section 3, the phase flow method can be deployed in all three settings, hence offering new
and elegant methods to solve each of these problems. Our solutions are efficient and accurate but we would like
to emphasize that above all, they are markedly different from existing approaches, which we now briefly review.
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Obviously, there is a vast literature on numerical methods for solving problems 1, 2 and 3; these methods
are roughly divided between Eulerian and Lagrangian methods. For the problem of propagating wave fronts
for example, a Lagrangian method often discretizes the initial wave front with Lagrangian markers. These
markers are traced using the ray equations to obtain the wave front at a later time. Besides the fact that
one typically needs to trace out many such rays, there is an additional difficulty stemming from shadow
regions where rays diverge thus causing a substantial loss of resolution. Commonly discussed approaches
to address this issue monitor the ray density as the wave front evolves and insert new rays whenever this is
necessary [20,36]. This is problematic as standard methods for inserting rays are typically either computation-
ally expensive or rather imprecise. As we shall see, the phase flow method easily overcomes these difficulties
since as we have seen, it allows the tracing of new rays—i.e. compute new solutions—with O(1) complexity per
ray. In other words, inserting new points is automatic and effortless.

Another line of work has pushed the Eulerian point of view to solve for the phase function or compute the
evolution of the wave front. Methods based on the resolution of the time dependent eikonal equation (the
nonlinear equation for the phase U) are imperfect because the superposition principle does not hold; waves
are not allowed to cross since the ansatz postulates that there is at most one wave front at any given location.
Such methods then only give the viscosity solution [34,35], i.e. only resolve the first arriving wave. Extensions
to obtain multivalued solutions [1,2,12,26,29,31] are often complicated and often rely on discretionary choices.
This is the reason why many modern computational strategies now operate in phase space [3,10]. The Eulerian
viewpoint then assumes a discretization of phase space by means of a Cartesian grid. Physical quantities, e.g.
the particle density function f(t,x,p), are then computed by solving the PDE formulation of geometrical optics
on the grid, e.g. the Liouville equation. Interesting work in this rapidly growing area includes the methods of
Osher and his colleagues based on the level set formulation [5,22,23], the fast marching method of Fomel and
Sethian [13], the moment-based method of Engquist and Runborg [9,25], and the segment projection method
of Engquist et al. [11,33].

From a certain viewpoint, the phase flow method can be viewed as a hybrid method. On the one hand
and much like in an Eulerian scenario, it starts with a discretization of a reduced version of phase space. On
the other hand, however, the wave fronts and amplitudes are traced in a Lagrangian fashion using the ray
equations.

2. The phase flow method

We are interested in solving the system of nonlinear differential equations (1.1) dy/dt = F(y), where we
recall that y takes on values in Rd and F :Rd! Rd is a smooth function. Throughout this paper, M � Rd

denotes a smooth, compact, d(M)-dimensional invariant manifold, and we will use gt :M!M to denote
the restriction of the phase map to M. The distance between any two points y0 and y1 on the manifold M

is simply the usual Euclidean distance in Rd denoted by jy0 � y1j. Our methods can be adapted to handle other
types of distances but we shall not consider such extensions in this paper. Finally, because we are only inter-
ested in the solutions near M, we assume without loss of generality that F is supported in an open convex and
bounded domain U which contains M (the convexity assumption merely simplifies the proofs of the main
results). This ensures that F satisfies the Lipschitz condition and thus the existence and uniqueness of the solu-
tion to (1.1) is guaranteed.

The phase flow algorithm introduced below (variants exist as we will see later) constructs an approximation
~gT : M ! M to the ‘‘true’’ phase map gT so that the approximate solution, denoted by ~yðT ; y0Þ, is equal to
~gT ðy0Þ. We will assume throughout that an ODE integration rule and an interpolation scheme on M have been
preselected. The extra assumptions on the interpolation scheme include that the construction of the interpo-
lant has linear complexity in terms of the grid size and that the complexity of evaluating the interpolant at any
point is O(1).

Algorithm 1 (The phase flow method)

� Parameter selection. Select a grid size h > 0, a time step s > 0, and an integer constant S P 1 such that
B = (T/s)1/S is an integer power of 2.
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� Discretization. Select a uniform or quasi-uniform grid Mh � M of size h.
� Burn-in. Compute ~gs. For a gridpoint y0, ~gsðy0Þ is calculated by applying the ODE integrator (single time

step of length s). Then construct an interpolant based on these sampled values, and for any other point y0,
define ~gsðy0Þ by evaluating the interpolant at y0.
� Loop. For k = 1, . . . ,S, evaluate ~gBks. For a gridpoint y0, ~gBksðy0Þ ¼ ð~gBk�1sÞ

ðBÞðy0Þ where f (2) = f � f,
f (3) = f � f � f and so on. Construct an interpolant based on these sampled values, and for any other point
y0, define ~gBksðy0Þ by evaluating the interpolant at y0.
� Terminate. The algorithm terminates at k = S since by definition BSs = T and hence ~gT ¼ ~gBSs. The approx-

imate solution ~yðT ; y0Þ is equal to ~gT ðy0Þ.

The phase flow algorithm relies on three components which have not been specified yet, namely, the ODE
integration rule, the local interpolation scheme used in the Burn-in and Loop steps, and the selection of the
discrete grid Mh. These components may of course be problem dependent and shall be specified in later sec-
tions when discussing concrete instances or applications. For the moment and at this level of generality, we
would simply like to remark that both the ODE integrator and the local interpolation scheme may involve
a projection step onto M since we require ~gt to be a mapping from M onto itself.
2.1. Error analysis

Algorithm 1 is amenable to rigorous error analysis and the theorem below enumerates some of its key
properties.

Theorem 2.1. Suppose that the ODE integrator is of order a and that the local interpolation scheme is of order

b P 2 for sufficiently smooth functions. We shall also assume that the linear interpolation rule has h-independent

L1 norm on continuous functions. Define the approximation error at time t by
et ¼ max
b2M
jgtðbÞ � ~gtðbÞj: ð2:1Þ
Then Algorithm 1 enjoys the following properties:

(i) The approximation error obeys
eT 6 C � ðsa þ hbÞ ð2:2Þ
for some positive constant C > 0.

(ii) The complexity is O(s�1/S Æ h�d(M)).

(iii) For each y 2M, ~gT ðyÞ can be computed in O(1) operations.

(iv) For any intermediate time t = ms 6 T where m is an integer, one can evaluate ~gtðyÞ for each y 2M in

O(log(1/s)) operations.

For a multi-index c, we use ocF(y) to denote the spatial derivative of F with respect to y, while ocy(t,b) is the
derivative of y with respect to the initial condition b. The proof of Theorem 2.1 depends on the following two
lemmas.

Lemma 2.2. Suppose F has Lipschitz constant L on U. Then for any pair b0,b1 in M, we have
jyðt; b0Þ � yðt; b1Þj 6 eLtjb0 � b1j:
This is a simple application of Gronwall’s inequality and we omit the proof.

Lemma 2.3. For each s P 2, there exists a constant Cs such that for any multi-index c with jcj = s and any

b 2M
jocyðt; bÞj 6 Cse
ð2s�1ÞLT � t:
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Proof. We use the componentwise notation for the vectors y = (y1, . . . ,yd) and F = (F1, . . . ,Fd), which allows
rewriting (1.1) as
dyi

dt
¼ F iðy1; . . . ; ydÞ; yið0Þ ¼ yi

0: ð2:3Þ
Since F is smooth and its support is contained in a bounded domain U, there exists a sequence of constants
fC1

sg such that, for any multi-index c with jcj 6 s, we have
jocF iðyÞj 6 C1
s ; y 2 U :
The next step is to establish a bound for ocy(t,b). We claim that there exists a sequence of constants fC2
sg such

that, for any c with jcj = s
jocyðt; bÞj 6 C2
s eð2s�2ÞLTþLt

6 C2
s eð2s�1ÞLT ; 0 6 t 6 T :
We prove this by induction and start with s = 1. Differentiate (2.3) and obtain
dyi
k

dt
¼
X

a

F i
aya

k ;
where the lower script denotes differentiation with respect to the kth variable. Because the norm of the d by d

matrix F i
a is the Lipschitz constant L of F, we have
djykj
dt
6

dyk

dt

���� ���� 6 L � jykj; jykð0Þj ¼ 1;
where the first inequality is a simple consequence of the triangle inequality. A direct application of Gronwall’s
inequality then shows
jykðtÞj 6 eLt:
Now assume the claim is true for any multi-index of order less than s. Fix c with jcj = s > 1 and differentiate
(2.3) on both sides to obtain
docyi

dt
¼
Xs

p¼1

X
ðc1;...;cpÞ:c¼

P
cj

X
a1;...;ap

F i
a1;...;ap

Yp

k¼1

o
ck yak

 !
; o

cyið0Þ ¼ 0; ð2:4Þ
the second summation is here over all different choices of (c1, . . . ,cp) (up to permutations) where
c = c1 + � � � + cp and jcjj > 0. There is only a single term in this expansion corresponding to p = 1, namely,P

aF i
ao

cya. Every other term with p > 1 involves a product of different partial derivatives of yi. First, by
induction
Yp

k¼1

o
ck yak 6 C � eð2jcj�pÞLT
for p > 1. Second, the number of terms (which only depends on s and d) is finite. It then follows that
djocyj
dt
6 Ljocyj þ C0eð2s�2ÞLT ;
where C 0 is a constant which depends on C1
p for p 6 s and C2

p for p < s. Since jocy(0)j = 0, applying Gronwall’s
inequality gives
jocyðt; bÞj 6 C0

L
eð2s�2ÞLTþLt

6
C0

L
eð2s�1ÞLT :
Putting C2
s ¼ C0=L proves the claim.

To prove the lemma, observe that the right hand side of (2.4) is bounded by Cs/L Æ e(2s�2)LT+Lt where the
constant Cs depends on C1

s and C2
s . Integrating from time 0 to t gives
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jocyðt; bÞj 6 Cs � eð2s�2ÞLT � e
Lt � 1

L
6 Cs � eð2s�1ÞLT � t:
The proof is complete. h

Proof of Theorem 2.1. We begin by proving (i) and first develop an estimate for the error after the first time
step of size s. Suppose that y is a gridpoint, then
j~gsðyÞ � gsðyÞj 6 C0 � saþ1
since the ODE integrator has order a. (The constant C0 here depends on the behavior of gt for t 2 [0,s].) Let I

(resp. eI ) be the interpolant constructed from the values of gs(b) (resp. ~gsðbÞ) where b ranges through the dis-

crete grid Mh. If y is not a gridpoint, y 2MnMh, we have ~gsðyÞ ¼ eI ðyÞ and
j~gsðyÞ � gsðyÞj 6 jeI ðyÞ � IðyÞj þ jIðyÞ � gsðyÞj:

Assuming NI to be the h-independent norm of the interpolation operator, the first term is bounded by
jeI ðyÞ � IðyÞj 6 N I �max
b2Mh

j~gsðbÞ � gsðbÞj 6 C0 � NI � saþ1;
while the second term obeys
jIðyÞ � gsðyÞj 6 C1 � hb �max
jcj¼b

sup
b2M
jocyðs; bÞj 6 C2 � hb � s
following Lemma 2.3. Therefore, the error term es obeys
es 6 C0 � N I � saþ1 þ C2 � hb � s: ð2:5Þ

Consider now eBs. If y 2Mh, then
jg2sðyÞ � ~g2sðyÞj 6 jgsðgsðyÞÞ � gsð~gsðyÞÞj þ jgsð~gsðyÞ � ~gsð~gsðyÞÞj 6 eLses þ es ¼
e2Ls � 1

eLs � 1
es;
where we applied Lemma 2.2. Repeating this procedure gives
jgBsðyÞ � ~gBsðyÞj 6
eLBs � 1

eLs � 1
es:
If y is not a gridpoint, the same decomposition as that used to bound the distance between ~gsðyÞ and gs(y)
shows that
eBs 6 N I �
eLBs � 1

eLs � 1
es þ C2 � hb � Bs:
In conclusion, for 1 6 k 6 S, our argument gives the following recurrence relation:
eBks 6 N I �
eLBks � 1

eLBk�1s � 1
� eBk�1s þ C2 � hb � Bks:
It remains to expand the last inequality for k = S which gives
eT 6 NS
I

eLBSs � 1

eLs � 1
es þ C2 � hb �

XS

k¼0

Nk
I

eLBSs � 1

eLBS�ks � 1
BS�ks:
For the first term, eLs � 1 P Ls and, therefore, it follows from (2.5) that
N S
I

eLBSs � 1

eLs � 1
es 6

eLT � 1

L
C0 � NSþ1

I � sa þ C2 � N S
I � h

b
� �

:

For the second term, we observe that
XS

k¼0

Nk
I

eLBSs � 1

eLBS�ks � 1
BS�ks 6

eLT � 1

L

XS

k¼0

Nk
I
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and, therefore,
eT 6 C � ðhb þ saÞ;

where the constant C depends on C0, C2, NI, S, T and L.

We now prove (ii) and let jMhj be the number of gridpoints. The one-step ODE integrator takes a constant
number of operations per gridpoint and is thus of the order of O(jMhj). As we have seen, the construction of
~gT is divided into S stages, and each stage requires applying the approximate phase map B times. Hence each
stage has complexity O(B Æ jMhj). Since M is a d(M)-dimensional manifold, the size of the grid may not exceed
O(1/hd(M)) and, therefore, the total complexity is O(SB/hd(M)) = O(s�1/S Æ h�d(M)) since S is a fixed small
integer.

The claim (iii) is immediate since for each y 2M, computing ~gT ðyÞ only uses local interpolation.
We finally prove (iv). Since B is a power of 2, the intermediate steps of the phase flow method build ~gtk for

all dyadic times of the form tk = 2ks. Fix a time t = ms, where m is an arbitrary integer, and consider the
binary expansion m ¼ 2k1 þ 2k2 þ � � �. Clearly, we have available the approximation ~gt ¼ ~gtk1

� ~gtk2
� � � � where

there are at most log2(T/s) terms in the composition. The claim (iv) follows, and this concludes the proof of the
theorem. h

To simplify the exposition, we have assumed that both M and F where smooth in the sense that F had deriv-
atives up to any order, say. This is of course not necessary. We note from the proof that we only need that the
mapping y(t,b) be Ca+1 with respect to t and Cb with respect to b. It is then sufficient to simply assume that M

and F be r times continuously differentiable with r = max(a + 1,b).
Specializing the grid size so that the two types of error be of the same magnitude gives:

Corollary 2.4. Suppose one selects the grid size so that hb = sa. Then the accuracy of the method is eT = O(sa) and

the complexity of the phase flow algorithm is O(s�1/S�d(M)a/b).

One comment is in order. Suppose that M and F are sufficiently smooth, then one can choose b and S

large enough so that d(M)a/b + 1/S < 1. Admittedly, the claim in the corollary is then rather surprising. In

effect, it says that in an asymptotic sense, one can compute an approximation to the entire phase map gT much

faster than one computes—with the same order of accuracy—a single solution with the standard ODE integra-

tion rule. This is of course an asymptotic statement and we have not studied instances where this might be
‘practically’ true. The construction of the phase maps in the numerical examples of Section 4 takes about
the same amount of time as integrating a few dozen or perhaps a few hundred solutions. Therefore, when-
ever one needs to solve ODEs with thousands or even more initial conditions, the phase flow method offers
significant speedup.

2.2. Variations

In Algorithm 1 we have chosen S to be a constant. Instead, one can also let B take on a small integer value,
e.g. B = 2, and this results in a ‘‘time-doubling’’ type algorithm. However, the claims (i) and (ii) of Theorem
2.1 no longer hold since S = logB(T/s) is no longer a fixed small integer. In this case, the complexity of the
algorithm is reduced but there is a loss of accuracy due to an increase in the size of the interpolation errors.
The reason is that the phase map is interpolated at the discrete time points Bks and the smaller B, the more
interpolation steps—thus causing a loss of accuracy.

Corollary 2.5. The time-doubling version of Algorithm 1 with B = NI (the h-independent interpolation norm) has

complexity O(log(1/s) Æ h�1/d(M)) but reduced accuracy O((sa + hb)/s). The time-doubling version of Algorithm 1
with B = 2 has accuracy O((sa + hb)/sr), where r = log2(NI).

The proof is a minor adaptation of that of Theorem 2.1. Although this version is less attractive from a the-
oretical viewpoint, it can still be useful for practical purposes.

For large times, gT may become quite oscillatory while remaining smooth. In order to capture the varia-
tions of gT, one would then need to use a tiny spacing for the discretization of M. In practice, the modified
version below is often more efficient for large times T.
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Algorithm 2 (The phase flow method: modified version)

� Choose T0 = O(1) such that gT 0
remains non-oscillatory and pick h so that the grid is sufficiently dense to

approximate gT 0
accurately. Assume that T = mT0, where m is an integer (possibly but not necessarily a

power of 2).
� Construct ~gT 0

using Algorithm 1.
� For any y0, define ~gT ðy0Þ by ~gT ðy0Þ ¼ ð~gT 0

ÞðmÞðy0Þ.

Since T0 = O(1), the conclusions of Theorem 2.1 remain valid for Algorithm 2.

In practice, the choice of the parameters T0 and h is often problem specific. The general rule for h is that the
discretization grid Mh must be dense enough to give an accurate approximation of the map F restricted to the
manifold M—preferably, significantly denser. One may want to select the value of T0 along with the construc-
tion of the phase maps as follows: we monitor the error of ~gBks for increasing values of k, which can be done by
tracing a dozen of rays accurately from random initial conditions and comparing with ~gBks; we then terminate
the algorithm at k = K where the error of ~gBK s is close to a prescribed error threshold, and set T0 = BKs.

We conclude this section with a pointer to Section 4 which complements the theoretical analysis with a ser-
ies of numerical experiments showing that the phase flow method is practically very effective. Further, Section
4 is also informative in the sense that it proposes concrete choices for the discretization of the invariant man-
ifold M.

3. High frequency wave propagation

This section applies the phase flow method to solve three important problems in computational high fre-
quency wave propagation, namely, the tracking of wave fronts, the computations of wave amplitudes, and
the computations of wave arrival times. The model we use is the standard geometrical optics formulation intro-
duced in Section 1. To keep the exposition self-contained, we first review the basic tenets of this approximation.

3.1. Geometrical optics

Here, one assumes a classical high-frequency approximation to a wave field u(t,x) of the form
uðt; xÞ ¼ eixUðt;xÞ
X
nP0

Anðt; xÞðixÞ�n
;

where x is a two or three-dimensional spatial variable, t is time, and x is a large base frequency. After substi-
tuting the approximation in the scalar wave equation (1.4), it follows that the phase function U must obey the
eikonal equation
Ut � cjrUj ¼ 0; ð3:1Þ
cT

(0,0)

(1,1)

cT

cT

cT

c(x)=c

c1T

c0T
(0,0)

(1,1)
c(x)=c1

c(x)=c0

(a) (b)

Fig. 1. Non-periodic wave speeds.
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where we recall that c(x) is the wave speed. Without loss of generality, consider the equation with the plus sign.
Then the amplitudes obey transport equations, and we only give that for the first order term
Fig. 2.
(c) and
A0;t þ c
rU
jrUj � rA0 þ

A0ðc2DU� UttÞ
2cjrUj ¼ 0: ð3:2Þ
Numerical methods based on geometric optics solve for these two functions.
The connections with systems of nonlinear ODEs are through the ray equations we introduced earlier
dx

dt
¼ cðxÞ p

jpj ;
dp

dt
¼ �jpjrcðxÞ; ð3:3Þ
where p is called the slowness vector. These are the equations of the Hamiltonian dynamics (1.2) with Ham-
iltonian H(x,p) = c(x)p, and the integral curves of (3.3) are often called rays. Now the ray equations (3.3) de-
scribe the evolution of the wave front because the phase function is actually constant along the rays; that is,
setting p(0) = $U(0,x(0)) gives U(t,x(t)) = U(0, x(0)). This is why the system (3.3) is also called the bicharac-

teristic flow and the rays (x(t),p(t)) the bicharacteristics. In short, propagating a wave front—a level set of U—
may be thought of as tracing rays. Once the phase of the wave is known, one can solve for the amplitude; in
fact, the amplitude function is also transported along the rays as indicated by (3.2). Spreading and concentra-
tion of neighboring rays relate to the attenuation and amplification of the wave amplitude.
Primal and dual structure in Example 3 of Section 4 at time t = 2. (a) and (b) primal and dual structure in the parametric domain.
(d) zoom in on the mesh. The primal mesh has discontinuities (^ junctions) while the dual mesh is tight.
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We conclude this short review by pointing out that there are other approaches to derive (3.3) from (1.4) by
the detour of particle density functions in phase space and means of the Wigner transform [14,27,28,32].

3.2. Phase map construction

We assume in this section that c(x) is a periodic function with period [0,1]d. This assumption is valid in
many applications (e.g. wave guide, micro structures) and will be relaxed later. Since (3.3) describes the Ham-
iltonian dynamics, H(x,p) = c(x)jpj remains constant along the rays and it is thus possible to factor out the jpj
dependence from (3.3). Setting p = jpjm gives a reduced version of the ray equations
dx

dt
¼ cðxÞm; dm

dt
¼ �rcðxÞ þ ðrcðxÞ � mÞm: ð3:4Þ
We define y by y = (x,m) and will sometimes write (3.4) in the compact form
dy

dt
¼ F ðyÞ: ð3:5Þ
In this setup, M = {(x,m) 2 Rd · Sd�1} is a smooth invariant manifold, and one is then in the position of apply-
ing the phase flow method.

Our discussion here focuses on the three components of the phase flow method: the discretization of M, the
ODE integration rule and the local interpolation scheme.

2D. We parameterize the unit vector m with the angular variable h and rewrite (3.4) as
dx
dt
¼ cðx; yÞ cos h;

dy
dt
¼ cðx; yÞ sin h;

dh
dt
¼ cxðx; yÞ sin h� cyðx; yÞ cos h ð3:6Þ
with M = R2 · [0, 2p). Since c(x) is periodic, the dependence of gt on the x variable is also periodic. Therefore,
even though M is not compact, we only need to approximate the restriction of gt on the fundamental domain
[0,1)2 · [0,2p) as the behavior of gt elsewhere can be obtained by simple translation. We then simply discretize
[0,1)2 · [0,2p) by means of a uniform Cartesian grid. The fourth-order Runge–Kutta method is used as the
ODE integrator for the initial step. Because M = R2 · [0,2p), no projection is necessary.

Instead of interpolating the phase map gt(y), we construct an interpolant for the shift gt(y) � y which is
periodic. Hence, the problem simplifies to interpolating a periodic function on a uniform Cartesian grid.
We use cardinal spline interpolation, which has h-independent interpolation norm [7], as our local scheme.
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Fig. 3. The wave speed in Example 1.



Table 1
The error eT 0

for different choices of initial grids and T0

Discretization vs. T0 0.0625 0.125 0.25 0.5

(16,32) 4.991e�04 1.034e�03 2.316e�03 5.252e�03
(32,64) 2.301e�05 4.563e�05 8.344e�05 3.787e�04
(64,128) 1.274e�06 2.759e�06 5.195e�06 7.343e�06
(128,256) 1.133e�07 1.755e�07 3.901e�07 6.016e�07

The rows indicate the number of gridpoints used to sample the reduced invariant manifold M = [0,1] · [0,2p], i.e. (16,32) means that 16
and 32 points are used in the y and h directions respectively. Each column corresponds to a different value of T0.
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Given the values of gt on the Cartesian grid, we first build the interpolant in tensor product cardinal B-spline
form. This is here equivalent to a simple deconvolution problem [7] which can be handled efficiently by FFTs.
Once the interpolant is available in cardinal B-spline form, interpolating the function values at any fix point y
has constant complexity.

3D. The invariant manifold M is now equal to R3 · S2 � R6. For the same reason as in 2D, we only need to
construct the interpolant on the domain [0, 1)3 · S2. We discretize the unit cube [0, 1)3 (the x component) with
a uniform Cartesian grid, and use the standard polar coordinates (h,/) to parameterize the unit sphere S2 (the
m component)
mðh;/Þ ¼ ðcos h sin /; sin h sin /; cos /Þ;

hand / are then discretized with a uniform grid
ð0; h; . . . ; 2p� hÞ � ðh=2; . . . ; p� h=2Þ;

where we have assumed that p is a multiple of h. We again use the fourth order Runge–Kutta method as the
ODE integration rule. After the ODE integration step, however, we need to reproject m onto S2. This is done
by simply choosing m/jmj, the nearest point to m on S2. It is possible to show that this extra projection step does
not affect the order of the ODE integrator.

Viewed as a function of x and of the pair (h,/), the shift gt(y) � y is periodic in x and h. We extend the shift
to make it periodic in / as well in the following way. Suppose f is a smooth function on S2 parameterized with
polar coordinates (h,/), we define its periodic extension f e : [0, 2p) · [�p,p)! R by
f eðh;/Þ ¼
f ðh;/Þ; / 2 ½0; pÞ;
f ðhþ p;�/Þ; / 2 ½�p; 0Þ:

�

This allows to use the same interpolation procedure as that employed in the 2D example except that one uses
the extension of ~gt as input.

When applying Algorithm 2 to (3.4), we need to specify the ‘mesh size’ h. Suppose N is the frequency limit
beyond which the magnitude of the Fourier coefficients of c(x) is below a prescribed error threshold. Then 2N
is the Nyquist sampling rate required to represent c(x) accurately. In practice, we often select h as 1/3N or
1/4N and the value of T0 is decided along the construction of the phase maps, see the discussion following
Algorithm 2.

We would like to remark that in the case where c(x) is independent of some of the coordinates, the invariant
manifold M can be reduced. We refer to numerical examples in Section 4 for details.

The assumption imposing c(x,y) to be periodic can be relaxed, and we illustrate this with two examples. In
the first example, the inhomogeneity of the wave speed is restricted to [0, 1]2, and c(x,y) is constant (equal to c)
elsewhere, see Fig. 1(a). The invariant manifold M is again R2 · S1 but the behavior of gt is not periodic any-
more. However, for a given time T, we are still able to approximate gT on M efficiently. Define
MT :¼ [�cT, 1 + cT]2 · S1 where the subscript indicates the time dependence. Although MT is not an invariant
manifold, for each t 6 T, gt is trivial on the complement R2 · S1nMT since the wave speed is constant in
R2n[0,1]2. Therefore, one only needs to approximate the restriction of gt (for t 6 T) on MT instead of on
the whole (reduced) phase space R2 · S1. This can be done efficiently by constructing the restriction of ~gBks

(k = 1,2, . . .) on MT by means of the phase flow method. In the second example, c(x,y) is periodic in the x

variable and obeys c(x,y) = c0 for y < 0 and c(x,y) = c1 for y > 1, see Fig. 1(b). For the same reason as before,
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given a time T, we only need to approximate gt for t 6 T on MT = [0,1] · [�c0T, 1 + c1T] · S1 since elsewhere,
gt is again trivial.

3.3. Wave front construction

In 2D, we shall consider one-dimensional wave front curves (taking values in M) parameterized by a real
variable r, and with initial value y0 = (x0,m0). Whenever convenient, we shall use the following notations to
emphasize the dependence of the wave front curve on r
yðt; rÞ :¼ yðt; y0ðrÞÞ; xðt; rÞ :¼ xðt; y0ðrÞÞ; mðt; rÞ :¼ mðt; y0ðrÞÞ:

In 3D, we will consider two-dimensional wave front surfaces parameterized by the pair of variables (r, s). The
corresponding notations are
yðt; r; sÞ :¼ yðt; y0ðr; sÞÞ

and likewise for x and m. Finally, we use ~y, ~x and ~m to denote numerical approximations to their corresponding
quantities.
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Given an initial wave front y0 in 2D, the basic algorithm to construct the wave front time T operates as
follows:

� Choose T0 according to Algorithm 2 and construct ~gT 0
ð�Þ.

� Discretize the wave front by sampling y0(r) at points ri.
� For each sample ri, approximate y(T, ri) with ~yðT ; riÞ ¼ ð~gT 0

ÞðmÞðy0ðriÞÞ where T = mT0.
� Connect ~xðT ; riÞ—the spatial component of ~yðT ; riÞ—to construct the final wave front.

In the previous algorithm, we assumed a fixed and uniform discretization of the initial wave front. How-
ever, for large times T, the wave front may become rather complex and the rays may diverge. Unless the dis-
cretization of the initial wave front is extremely fine, uniform discretization may not be able to resolve the final
wave front accurately. In a traditional Lagrangian approach, one often inserts new points on the wave front
when the resolution deteriorates. Computing the position and slowness vector of these new points from cor-
responding initial conditions can be quite expensive. Instead, one typically computes these quantities by inter-
polating the values of nearby markers. Such interpolation procedures, however, are (1) quite complicated
because the markers do not belong to a well structured grid, and (2) often have a low order of accuracy.
In addition, interpolating the amplitude is certainly nontrivial.

We propose below an algorithm which adaptively discretizes the wave front based on its inherent complex-
ity. In this adaptive approach, the position, slowness and even amplitude of the inserted points can be computed
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directly from the initial conditions in O(1) operations (this is again one of the benefit of the phase flow method).
Therefore, no complicated unstructured grid interpolation is required. We assume without loss of generality
that the initial wave front is parameterized by a variable r 2 [0,1].

Algorithm 3 (2D adaptive wave front construction)

� Choose T0 and construct ~gT 0
.

� Choose a tolerance k. Discretize the initial wave front with samples R = {ri}. The initial parameter domain
[0,1] is now partitioned into intervals and put ~yð0; riÞ ¼ y0ðriÞ. We require that each pair of adjacent sam-
ples obeys jy0(ri) � y0(rj)j 6 k.
� For k = 1, . . . ,T/T0

– For any ri 2 R, ~yðkT 0; riÞ ¼ ~gT 0
ð~yððk � 1ÞT 0; riÞÞ.

– For each pair of adjacent samples (ri, rj), insert new samples {r‘} evenly distributed in [ri, rj] if
j~yðkT 0; riÞ � ~yðkT 0; rjÞj > k. The number of new samples is equal to dj~yðkT 0; riÞ � ~yðkT 0; rjÞj=ke. The
interval [ri, rj] is thus partitioned into smaller intervals. The values ~yðkT 0; r‘Þ at the new points {r‘} are
computed by ~yðkT 0; r‘Þ ¼ ð~gT 0

ÞðkÞðy0ðr‘ÞÞ.
� Connect ~xðT ; riÞ for ri 2 R to obtain the final wave front.

The algorithm in 3D is similar. Assuming the initial wave front is parameterized by (r, s) 2 [0, 1] · [0, 1], the
initial wave front is partitioned into patches, each of which is parameterized by a rectangular region in the (r, s)
space. The diameter of each patch is less than k. During the wave front construction, we maintain the wave
front as a union of patches and keep track of the approximate solution ~y at the corners of the patches. When-
ever the diameter of a patch is larger than k, the patch is split in the parametric domain into smaller patches.
The values at the corners of the new patches are computed from the initial value using ~gT 0

. A typical partition
of the parametric domain is shown in Fig. 2(a).

If one only needs the spatial component of the wave front, one can replace the splitting rule
j~yðkT 0; riÞ � ~yðkT 0; rjÞj > k
with
j~xðkT 0; riÞ � ~xðkT 0; rjÞj > k:
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Note that such a modification would cause problems in a standard Lagrangian approach. There, one needs
to maintain an adequate approximation of the wave front in phase space for accurate interpolation. Inserting
samples when there is a significant variation in the x component may not be capable of capturing the direc-
tional variation (the m component) of the wave front near the caustics, thus providing poor results when inter-
polating the wave front information at the newly inserted samples. In contrast, our approach is immune to
such issues since no interpolation is used.
3.4. Amplitude computations

We are now concerned with the computation of the wave amplitudes along the rays. This requires addi-
tional information about the shape of the ray source as we now explain. Put A0 to be the leading amplitude
function in (1.5). Then the following relationships:
A0ðxðt; rÞÞ
A0ðxð0; rÞÞ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jorxð0; rÞj
jorxðt; rÞj

� cðxðt; rÞÞ
cðxð0; rÞÞ ;

s
ð3:7Þ
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Fig. 9. Amplitude computation results (Example 2). The three frames show the amplitude at times t = 0.5, 1 and 1.5. The
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A0ðxðt; r; sÞÞ
A0ðxð0; r; sÞÞ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jorxð0; r; sÞ � osxð0; r; sÞj
jorxðt; r; sÞ � osxðt; r; sÞj

� cðxðt; r; sÞÞ
cðxð0; r; sÞÞ

s
ð3:8Þ
hold in 2D and 3D respectively. The additional information we need to track are the spatial derivatives of the
rays’ sources, namely, orx(t, r) in 2D, and orx(t, r, s) and osx(t, r, s) in 3D. Using our compact notations, these
quantities can of course be retrieved from the differential matrix $by(t,b). If we can track $by(T,b) for any b,
then we can easily compute A0 using (3.7) and (3.8). The key point is that one can use the phase flow method to
compute the flow $by(T,b).

Indeed, differentiating (3.5) with respect to the initial condition gives the following evolution equation for
$by(t,b)
drbyðt; bÞ
dt

¼ ryF ðyðt; bÞÞ � rbyðt; bÞ; rbyð0; bÞ ¼ I :
We use the phase flow method to compute the derivative of the phase map Gt(b) = $by(t,b) = $bgt(b). To
achieve this, we approximate Gt(b) along with gt(b) in Algorithms 1 and 2. The group relationship now reads
G ðbÞ ¼ G ðg ðbÞÞ � G ðbÞ:
2t t t t
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Fig. 11. Cross-section view of the wave speed in Examples 3 and 4.
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Fig. 12. Computed wave front in Example 3 (3D waveguide). The four rows show the wave front at times t = 0.5, 1, 1.5 and 2. In each
row, the left frame plots the whole wave front, while the right frame only displays the lower half in order to show the interior. The mesh
used to approximate the wave front is not uniform since the approximation is adaptively refined as the wave front evolves.
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Fig. 13. Computed amplitude in Example 3. The four frames display the amplitude function with respect to the parameterization of the
initial wave front at times t = 0.5, 1, 1.5 and 2. The positions of the singularities are collocated with the caustic rings in Fig. 12. The
singularities are not fully resolved because of the low sampling rate.
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Algorithmically, we compute eG2tðbÞ, the numerical approximation to G2t(b), using
eG2tðbÞ ¼ eGtð~gtðbÞÞ � eGtðbÞ:

When ~gtðbÞ is not a gridpoint, eGtð~gtðbÞÞ is evaluated by means of interpolating the values eGt at nearby
gridpoints.

To be complete, we note that the first derivative of F in our problem (3.4) is given by
ryF ðyÞ ¼ mrcT cI

�r2cþ mmTr2c ðrc � mÞI þ mrcT

� �
:

In 2D for example, differentiation with respect to the (x,y,h) parameterization gives a matrix of the form
cx cos h cy cos h �c sin h

cx sin h cy sin h c cos h

cxx sin h� cxy cos h cxy sin h� cyy cos h cx cos hþ cy sin h

0B@
1CA:
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3.5. Multiple arrival times

We now consider the computation of multiple arrival times. We shall primarily be interested in two cases:
single source/multiple targets and single source/single target. In 2D, the source is defined as a smooth curve
and in 3D, as a smooth surface in the (reduced) phase space. For example, the source can be
0.2.. Cshorcooputa
x0ðrÞ ¼ 0; y0ðrÞ ¼ 0; h0ðrÞ ¼ 2pr
for an expanding spherical wave initially centered at the origin or
x0ðrÞ ¼ 0; y0ðrÞ ¼ r; h0ðrÞ ¼ 0
for a propagating planar wave. A target is a point in the physical space.
We define the trace of a wave front—from t0 to t1—as the union of the wave fronts (in the phase space) for

all t 2 [t0, t1]. The trace of a wave front in the 2D setup is a two-dimensional surface in the three-dimensional
reduced phase space, while the trace of a wave front in the 3D setup is a three dimensional volume in the five
dimensional reduced phase space. A trace is naturally parameterized by (t, r) in 2D and by (t, r, s) in 3D.
rAamplitude at t=155omputed amplitude inExample 3. The amplitude function is plotted only for the points on the initial wave front withs= 1/2.w the results at timest= 0.5, 1, 1.5 and 2. The singularities of the amplitude function are adequately resolved withrdinate.tional Physics 220 (2006) 184–215205



Fig. 15. Computed multiple arrivals in Example 4. The three rows show arrivals at target points with y = 0.375, 0.4375 and 0.5
respectively. Each row show the total number of arrivals, and the time of the first and last arrival.
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For every target point, the number of wave arrivals is equal to the number of trace points which have the
target point as its spatial component. The arrival times are the parameters t of these trace points. Therefore,
computing multiple arrival times is equivalent to projecting the trace onto the physical domain. Assuming that
one can construct the trace efficiently, this is a simple problem in computational geometry. To simplify the
presentation, we assume that c(x) is periodic.

Single source/multiple targets. Given a source and a time T, we wish to compute the arrivals generated by
the source in the time interval [0, T]. Recall that the phase space curve of the source (resp. the trace) is param-
eterized by r 2 [0,1] (resp. (t, r) 2 [0, T] · [0, 1]).

The parameters DT and k in Algorithm 4 control the accuracy of the approximate trace and thus the accu-
racy of the computed multiple arrival times. Suppose that we are provided with a prescribed error tolerance e
for the approximation of the trace. Then DT and k are set to be of order

ffiffi
e
p

since the linear interpolation we
use to approximate the trace is second order accurate.

Algorithm 4 (2D single source/multiple targets)

� Construct the wave trace with accuracy e.
– Choose a time step DT ¼ Oð

ffiffi
e
p
Þ and a tolerance k ¼ Oð

ffiffi
e
p
Þ.



Fig. 16. Computed wave front in Example 4. The four rows show the wave front at times t = 0.5, 1, 1.5 and 2. In each row, the left frame
plots the full wave front while the middle and right frames slice through the wave front to show the interior. The wave front is resolved
adaptively with an increasing number of samples.
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Fig. 17. The 3D wave speed in Example 5.
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– Apply Algorithm 3 to construct the final wave front at time T with time step T0 = DT and tolerance k.
– The samples of the final wave front are parameterized by {ri} and the previous step provides the values

~yðkDT ; riÞ for 0 6 k 6 T/DT. Approximate the trace by linearly interpolating the sampled values
~yðkDT ; riÞ. This approximation is represented by a triangle mesh in phase space. The wave evolution
is assumed to be linear in every triangle.

� Project the approximate trace ~y onto physical space (i.e. discard the m component).
� For each target point, we check whether it is covered by nearby projected triangles. If so, the arrival and

arrival time are recorded (recall the arrival time is linearly interpolated on each triangle). The nearby tri-
angles can be collected efficiently using a bounding box test, while inside/outside test for each triangle is
carried out using the determinant test [6].

Away from the singularities—e.g. caustics, cusps and in general the points where the Jacobian of x(t, r)
is degenerate—the one-to-one mapping from (t, r) to x is locally preserved since one uses a linear approx-
imation. Therefore, away from the singularities, the total number of arrivals is computed exactly. More-
over, it follows from the inverse function theorem that the accuracy of the computed arrival times is of
the order of e.

Although the structure of Algorithm 4 is similar to that of the existing ray-tracing type methods for com-
puting multiple arrival information, here, one can choose the time step DT to be much larger, and thus have a
more efficient algorithm. The reason is that for existing methods, the magnitude of the time step is limited in
order to ensure the stable and accurate construction of the wave front. In Algorithm 4, however, the construc-
tion of the wave front is decoupled and its accuracy is guaranteed by Algorithm 3. Therefore, the time step is
only restricted by the prescribed accuracy e for the multiple arrivals. As we will see in numerical examples (Sec-
tion 4), DT may be chosen to be fairly large without compromising the accuracy of multiple arrival times
computations.

The 3D algorithm has the same structure but is more complicated. Although linear interpolation within
each rectangular domain of the (r, s) space provides a close approximation to the trace, the approximate trace
is not ‘‘tight’’ in the sense that adjacent patches do not meet continuously along their common edge. This is
due to the ^ junctions which appear when the patch is partitioned (see Fig. 2(a)). This may result in errors and
inconsistencies when computing multiple arrival times. Our solution constructs a dual triangle mesh associated
with the primal structure. Every rectangle in the primal structure is associated with a vertex in the dual mesh



Fig. 18. Computed wave front in Example 5. The four rows show the wave front at times t = 0.375, 0.75, 1.125 and 1.5. In each row, the
left frame plots the full wave front while the middle and right frames slice through the wave front to show its interior.
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located at the center of the rectangle, while every vertex in the primal structure is associated to one or two
triangles in the dual mesh. Fig. 2 shows the primal structure and the dual mesh we constructed in Example
3 of Section 4. The dual mesh is guaranteed to be continuous and tight. Moreover, it has the same approxi-
mation error as the primal patch structure. Therefore, in the adaptive version of the multiple arrivals algo-
rithm, the trace is constructed by means of the dual mesh. It is further projected onto the physical space to
derive the information about multiple arrivals.

Single source/single target. When there is a single target (or just a few targets), it would be wasteful to com-
pute the full trace for t 2 [0, T] up to accuracy e. We propose a more efficient algorithm based on the obser-
vation that along the computation, one can a priori discard large portions of the trace with no chance of ever
hitting the target.

We make this rigorous and consider the part of the trace parameterized by (t, r) 2 [t0, t1] · [r0, r1]. Let
tm = (t0 + t1)/2 and rm = (r0 + r1)/2. The distance between y(t, r) and y(tm, rm) obeys
jyðt; rÞ � yðtm; rmÞj 6 jyðt; rÞ � yðt; rmÞj þ jyðt; rmÞ � yðtm; rmÞj
6 eLtjyð0; rÞ � yð0; rmÞj þmax

y
jF ðyÞj � jt � tmj:
Therefore, for any (t, r) 2 [t0, t1] · [r0, r1],
jyðt; rÞ � yðtm; rmÞj 6 eLt1 max
r2ðr0;r1Þ

jyð0; rÞ � yð0; rmÞj þmax
y
jF ðyÞj � t1 � t0

2
: ð3:9Þ
The trace parameterized by (t, r) 2 [0, T] · [0, 1] has a natural hierarchical structure corresponding to a quad-
tree structure on [0,T] · [0, 1]. The basic idea of the algorithm is to throw away large parts of the trace using
(3.9) before one even attempts to construct them.

Algorithm 5 (2D single source/single target)

� Choose a time step DT and assume that T = 2nDT for some integer n.
� Construct ~gT and store the intermediate phase maps ~g2kDT , �1 6 k 6 n, using Algorithm 2.
� Put Q0 = {[0,T] · [0,1]}.
� For k = 1, . . . ,n

– Set Qk to be empty.
– For each [t0, t1] · [r0, r1] in Qk�1, perform the following test: if the distance between the target and the

spatial component of ~y t0þt1

2
; r0þr1

2

� �
is less than
eLt1 max
r2ðr0;r1Þ

yð0; rÞ � y 0;
r0 þ r1

2

	 
��� ���þmax
y
jF ðyÞj � t1 � t0

2
;

then split [t0, t1] · [r0, r1] dyadically into four parts and put them into Qk. Here ~y t0þt1

2
; r0þr1

2

� �
is computed

by composing the appropriate maps ~g2kDT for k = �1, . . . ,n.
� For each [t0, t1] · [r0, r1] in Qn, use linear interpolation to approximate the part of the trace parameterized by

[t0, t1] · [r0, r1] and project the triangles (obtained from linear interpolation) onto the physical space. If the
triangles cover the target point, then record the arrival and the arrival time.

Two features make this algorithm highly efficient: first, as we pointed out earlier, parts of the trace far away
from the target are rejected and not constructed; and second, ~y t0þt1

2
; r0þr1

2

� �
is computed in O(logn) operations

by composing the maps ~g2kDT .
The extension to the 3D case is direct. We simply replace the quadtree structure on (t, r) 2 [0,T] · [0, 1] with

an octree tree structure on (t, r, s) 2 [0,T] · [0, 1] · [0,1].
4. Numerical results

We present a few examples to demonstrate the performance of the algorithms we introduced in Section 3.
The inhomogeneous wave speeds c(x) are here periodic in [0,1]d. All of our examples involve caustics. The
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algorithms are implemented in MATLAB. It is well known that a careful implementation in C or Fortran
would typically yield a significant speedup and, therefore, for the timing results, we focus on the speedup over
standard ray tracing methods. All the computations were performed on a desktop computer with a 2.6 GHz
CPU and 1 GB of memory.

Example 1. The first example is a 2D waveguide whose wave speed is given by
cðx; yÞ ¼ 1

1þ e�64ðy�1=2Þ2
:

Because the exponential function decays rapidly, one can view c(x) as periodic over [0,1]2 (see Fig. 3). Further,
since c(x,y) is independent of x, the invariant manifold M can be reduced to a two dimensional structure with
only the y and h components. The initial wave front is a plane wave at x = 0 and the wave propagates in the
positive x direction: the parameterization of the initial wave front is then x0(r) = (0, r) and h0(r) = 0. The initial
amplitude is constant and equal to 1.

In Table 1, we report the error behavior of the approximate phase map. The initial time step s used in the
construction of ~gT 0

is set at 2�10. The error is estimated as follows: we first choose N (set to 200 in this case)
random samples {yi} from M; ‘‘exact’’ solutions y(T0,yi) are computed by MATLABs adaptive ODE solver

with a prescribed error accuracy equal to 10�9; finally, we estimate the error by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1j~gT 0
ðyiÞ � yðT 0; yiÞj

2=N
q

:

The empirical accuracy is consistent with the theoretical estimates of Theorem 2.1.

Fig. 4 illustrates the results of the wave front construction algorithm. In this example, T0 = 0.25, s = 2�10

and S = 4. The two dimensional invariant manifold M is discretized uniformly with 64 points in y and 128
points in h. The construction of the approximate phase map ~gT 0

takes about 2 s. The computed phase map ~gT 0

has about five digits of accuracy (see Table 1). We use Algorithm 3 to propagate the wave front adaptively
until time T = 4. We set the tolerance at k = 1/32 and the final wave front at T = 4 has about 600 samples.
With ~gT 0

available, it takes 0.064 s to propagate the wave front. For comparison, the ray tracing algorithm
using MATLABs ODE solver takes about 0.08 s to trace one ray up to time T = 4. That is, the timing of a
simple ray tracing algorithm would increase by a factor of 750, even with the knowledge of these well-placed
600 samples. (In practice, standard Lagrangian type algorithms would need to guess these locations by
inserting rays as explained earlier, thereby increasing complexity.) The results show that our algorithm
computes the solution accurately even for (very) large times. We have observed here and also in the following
examples that for a fixed choice of T0 (and hence of ~gT 0

) the error of the computed wave front grows linearly
with respect to the final time T.

Fig. 5 shows the computed amplitude along the wave front at various times. Here k is set at 1/64 in order to
resolve the singularities in the amplitude. The wave front has about 1200 samples. The four frames here
correspond to the first four times in Fig. 4.

We use the single source/multiple targets algorithm (Algorithm 4) to compute the multiple arrivals for
t 2 [0, 4]. The target points belong to a 256 · 64 Cartesian grid (x,y) 2 [0,4] · [0, 1]. The time step DT is equal
to 1/16 and the wave front is again resolved adaptively with about 1200 samples. The results are presented in
Fig. 6.

Example 2. The wave speed in this example is given by
cðx; yÞ ¼ 1

1þ 3e�64ððx�1=3Þ2þðy�1=3Þ2Þ þ 3e�64ððx�2=3Þ2þðy�2=3Þ2Þ
;

where again c(x) is regarded as periodic in [0, 1]2 (see Fig. 7). The initial wave front is a circle centered at
(1/2, 1/2) with radius R = 0.01 and the wave propagates outward. The initial amplitude A is constant equal
to one along the wave front. The initial wave front is parameterized with an angular variable r 2 [0,2p].

Fig. 8 displays the results of the wave front construction algorithm. We choose T0 = 0.25 and s = 2�10. The
invariant manifold M is discretized uniformly with 64 points in x, 64 points in y and 128 points in h. The
construction of the approximate phase map ~gT 0

takes about 120 s. The computed phase map ~gT 0
has an

accuracy of about 10�5. We then propagate the wave front adaptively until T = 1.5. The tolerance k in
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Algorithm 3 is set to be 1/32. The final wave front is resolved with 1400 samples. The wave front construction
takes about 0.3 s. For these 1400 samples, ray tracing takes 60 s and, hence, the speed up factor is here about
200.

Fig. 9 plots the amplitude along the wave front at times t = 0.5, 1 and 1.5. The tolerance in the adaptive
algorithm is k = 1/128. The final wave front has 6500 points as to resolve the spikes in the amplitude function
which are in one-to-one correspondence with the caustic points in Fig. 8.

We apply Algorithm 4 to compute the arrivals information for t 2 [0,1.5]. The target points are fixed and
belong to a 192 · 192 Cartesian grid in [�1,2] · [�1,2]. The wave front is sampled adaptively with 3100
points. The results are shown in Fig. 10.

Example 3. This example is a 3D wave guide. The wave speed is
cðx; y; zÞ ¼ 1

1þ e�64ððx�1=2Þ2þðy�1=2Þ2Þ
;

which is again considered to be periodic in [0,1]3 (see Fig. 11). Since c is independent of z, the invariant man-
ifold M is, therefore, four dimensional. The initial wave front is a plane wave at z = 0 and the wave is prop-
agated in the positive z direction. We set the initial amplitude A to be one. The initial wave front is
parameterized by two variables r and s with x(0, r, s) = (r, s, 0).

In the wave front construction algorithm, we choose T0 = 0.125 and s = 2�10. The invariant manifold M is
discretized with a Cartesian grid with 24, 24, 48 and 24 points in x, y, h and / respectively. The phase map ~gT 0

is constructed in about 300 s and the accuracy is of order 10�5. We propagate the wave front using the
adaptive algorithm up to T = 2. We choose the tolerance k to be 1/16, and the final wave front is resolved with
about 12000 sampled values. After the construction of ~gT 0

, the wave front propagation takes less than 9 s. For
comparison, a simple ray tracing algorithm would have taken about 360 s even with the knowledge of well-
placed 12000 samples. Therefore, the speedup factor in this example is around 40. Fig. 12 shows the wave
front dynamics.

To display the amplitude information compactly, we discretize the initial wave front with a 128 · 128
Cartesian grid and compute the evolution of the amplitude function at these points. Fig. 13 shows the
amplitude functions with respect to the (r, s) parameterization. In every frame, the circles with high amplitude
values are in one-to-one correspondence with the caustic rings in Fig. 12. Because the 128 · 128 grid is not fine
enough to capture the singular behavior of the amplitude function, one can observe aliasing effects. In Fig. 14,
we plot the amplitude function for points with parameter value s = 1/2. We then sample r at 2000 points and
the singular behavior of the amplitude function is accurately captured.

We apply the single source/multiple targets algorithm (Algorithm 4) to compute multiple arrivals for
t 2 [0,2], see Fig. 15. The target points belong to a uniform 64 · 64 · 128 Cartesian grid in [0, 1] · [0,1] · [0,2].
The wave front is approximated with a dual mesh with 11000 samples.

Example 4. The wave speed used in this example is the same as that in Example 3. However, the initial wave
front is a sphere centered at (1/2,1/2,1/2) with radius R = 0.01, and propagating out. We propagate the wave
front adaptively until T = 2. The tolerance k in Algorithm 4 is set at 1/12. The final wave front at T = 2 is
resolved with 32000 samples. Fig. 16 shows the evolution of the wave front.

Example 5. In this last example, the wave speed is given by
cðx; y; zÞ ¼ 1

1þ 3e�64�ððx�1=4Þ2þðy�1=4Þ2þðz�1=2Þ2Þ þ 3e�64�ððx�3=4Þ2þðy�3=4Þ2þðz�1=2Þ2Þ
which is considered to be periodic in [0,1]3 (see Fig. 17). This is a full 3D example and the invariant manifold
M is five dimensional. The initial wave front is again a sphere centered at (1/2, 1/2,1/2) and with radius
R = 0.01. The wave propagates outward.

We choose T0 = 0.0625 and s = 2�10 in the wave front construction algorithm. The invariant manifold M is
discretized with a Cartesian grid with 16, 16, 16, 32 and 16 points in x, y, z, h and / respectively. The
approximate phase map ~gT 0

is constructed in 900 s and its accuracy is around 5 · 10�4. We propagate the wave
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front adaptively until T = 1.5 by setting k = 1/8 in Algorithm 3. The final wave front is resolved with about
37000 sampled values, see Fig. 18.

We conclude our discussion of numerical results with a few remarks. In each example, even though M is
discretized with only a few dozens of samples in each dimension, the computed phase map ~gT 0

has an approx-
imation error of order 10�5 (about 10�4 in the last example). Moreover, the error grows linearly with T. This
demonstrates that the phase flow method is practically accurate and efficient besides being theoretically sound.

When the invariant manifold M is of large dimension, e.g. M is 5D for the 3D ray equations, memory
emerges as a limitation simply because one needs to store an adequate discretization of the manifold. One
way out is to parallelize the phase flow algorithm, which is straightforward. For the ray equations in 3D,
the Cartesian grid may be partitioned into multiple rectilinear domains with possible overlapping regions
and with each domain stored in a single processor. Parallel FFTs can then be used to construct the interpolant
on each individual domain separately with the help of appropriate boundary conditions [7]. The essential step
of the phase flow method is to compute ~g2tðy0Þ ¼ ~gtð~gtðy0ÞÞ for a gridpoint y0 assuming that ~gt is available. To
do this, we use ~gtðy0Þ to identify the processor which contains the interpolant of ~gtð�Þ near the point ~gtðy0Þ. This
processor performs the interpolation and the result is sent back to the processor which owns y0.

5. Discussion

This paper introduced a novel approach to solve nonlinear autonomous ODEs on their invariant mani-
folds. The method computes an approximate phase flow by applying a local integrator for an initial small time
step, and uses the group property of the phase flow and high order local interpolation procedures for larger
times. As we have seen, the phase flow method is computationally efficient because it ‘‘pulls itself up by its
bootstrap:’’ that is, the method makes repeated use of prior computations to calculate the phase map at
the next (large) time step. There are related ideas in the literature as we note that repeated squaring strategies
have been proposed to compute large powers of matrices, compare algorithms for computing matrix exponen-
tials for example. Indeed, suppose we wish to compute a matrix A raised at a large power n of the form n = 2J.
Then a possible strategy is to define A0 = A and introduce the recurrence Ajþ1 ¼ A2

j so that Aj ¼ A2j
. When the

matrix A and its powers are sparse, this might be computationally attractive [8]. Besides computational effi-
ciency, the phase flow method is also empirically and theoretically highly accurate; in our experiments, we
computed phase maps with great precision from surprisingly coarse spatial grids.

As indicated in Section 3.2, the discretization of the invariant manifold depends upon the regularity of the
ODEs. In the example of ray equations, the choice of h is governed by the decay rate of the Fourier coefficients
of c(x). If c(x) is highly oscillatory, we are forced to use a fine grid and the phase flow method may or may not
be the optimal choice in such settings. We note, however, that in many practical applications such as seismic
imaging the wave speed c(x)—which often results from scale-separation arguments—is in fact quite non-oscil-
latory, see [30].

A more interesting question is whether the phase flow method extends to piecewise-smooth differential
equations; that is, to systems in which the function F in (1.1) is now piecewise smooth or even discontinuous.
For example, in the high-frequency wave propagation setup, one would like to be able to handle smooth wave
speeds but with discontinuities along piecewise smooth surfaces. As we mentioned earlier, the validity of the
phase flow method hinges on the smoothness of the phase maps gt. The apparent problem is that the regularity
of gt for piecewise smooth functions F is in general unclear. Nevertheless, if gt itself turns out to be piecewise
smooth as well, the phase flow method can be extended provided the following three issues are resolved:

(a) The ODE integrator should integrate piecewise smooth systems with high order accuracy, as it decides
the accuracy of ~gs.

(b) One would need an efficient method for predicting the singularities of the phase map gt at each value of t
used in the phase flow method. These singularities partition M into several components such that gt is
smooth within each component.

(c) Finally, one would also need refined interpolation strategies to interpolate gt accurately within each
component.
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In practice, the solutions to (b) and (c) can be combined into a single ENO-type interpolation scheme
[17,18]. We are currently investigating this important extension and hope to report on our progress in a sep-
arate publication.

Finally, our method solves general ordinary differential equations and as such, is expected to find applica-
tion niches in a variety of different fields. For example, the method may be directly applicable to compute geo-
desic flows. Suppose we are given a surface and that we wish to compute geodesic curves on that surface. Then,
one could apply the phase flow method since it is possible to formulate geodesics as solutions to autonomous
ordinary differential equations. Many problems with this flavor exist but there are also less traditional appli-
cations where the phase flow method might be useful and we conclude with one such opportunity. There exists
a newly invented multiscale system based on parabolic scaling in which basis functions are called curvelets and
are supported in elongated regions obeying the relation width � length2. This system is remarkable because it
provides optimally sparse representations of the solution operators to large classes of wave equations (1.4) [4].
Curvelets are simple waveforms indexed by ‘regularly’ spaced points in phase space. Now the action of the
wave propagator on a curvelet is well-approximated by a rigid motion along the Hamiltonian flow, and in
order to compute efficiently the sparse curvelet matrix of the full wave propagator, one would need to know
where the significant entries of the matrix would be. That is, one would need to trace as many rays as there are
curvelets. Obviously, this is a problem for which the phase flow method is especially well suited.
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